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Abstract —Electromagnetic scattering of guided modes in a dielectric

slab waveguide caused by an arbitrarily shaped broken end is amdyzed

theoretically by using the integral equation method. By solving the integral

equations iteratively, the tangential components of the electric and mag-

netic fields on the broken end surface are determined, from which the

reflected mode power, the radiation wave power and field patterns, and

the total scattered power are obtained. Numerical results are presented for

the plane-perpendicular, plane-tilted, and arc-shaped end surfaces. Both TE

and ‘rM modes are assumed as an incident wave.

1. INTRODUCTION

R ECENTLY, remarkable progress has been made in

single-mode fiber techniques, yet several difficult tech-

nical problems still remain to be solved before practical

single-mode optical fiber transmission systems can be real-

ized. One of the most important problems is the detection

and ranging of breakage in the single-mode optical fiber

cables. The backscattering method seems to be one of the

effective techniques for detecting the fault location and for

determining the loss distribution along optical fibers, par-

ticularly for the multimode fibers [1]. However, in the case

of single-mode fibers, the backscattered power is very small

because of the small core diameter and the slight index

difference between core and cladding. The method using

direct reflected light from breakage is another possible

technique for the detection of fault location in the single-

mode fibers. The disadvantage of this method is that the

amount of reflected power depends strongly on the situa-

tions of breakage. Therefore, to discuss the feasibility of

this method, we have to know beforehand the reflected

power from various types of breakage in the single-mode

fibers.
Reflection of guided modes at the tilted-plane end

surfaces has been considered in connection with the prob-

lems of the imperfectly broken fiber ends [2] and of the

tilted mirrors in semiconductor lasers [3]. The theories in

these papers, however, are not satisfactory in the sense that

they have not taken the full boundary conditions into

account. Similar problems have been treated by the varia-
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tional method [4]–[6] and the mode expansion method [7].

Practically, however, these analyses are applicable only to

the vertical end surfaces.

In the present paper, the electromagnetic scattering from

the arbitrarily shaped broken ends in a dielectric slab

waveguide is analyzed, based on the int$gral equations

which are derived by applying the full boundary conditions

on the end surface. In the integral equations, simple, but

sufficiently accurate, approximate expressions of the

Green’s functions are used in the waveguide side, while the

conventional Green’s function is employed in the external

side. Numerical results are presented for the cases of

tilted-plane and arc-shaped cut ends of a dielectric slab

waveguide embedded in sea water and air for both TE and

TM mode incidence. From these numerical data, the

possible detectable range of fault location by using re-

flected pulses from the breakage in the single-mode optical

fiber cables can be estimated.

II. INTEGRAL EQUATIONS

Consider the arbitrarily shaped end surface of the dielec-

tric slab waveguide as shown in Fig. 1. In the figure, c

denotes the boundary line between the external side, with

refractive index ICQ, and the slab waveguide side, which

consists of the core with thickness d and refractive index

~~, and the upper and lower claddings with refractive

indices K1 and ~~, respectively. It is assumed that K ~ > K3 >

K1 .

A. TM Mode Incidence

The tangential field components at a point in the wave-

guide side and unlimitedly close to the observation point P

on c are expressed as [9], [10]

(1)

._ ~ aG#

1
‘“x ‘v’

(2)

where the subscript H means the case of TM mode inci-
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Fig, 1. Profile of arbitrarily shaped broken end m dielectric slab wave-
guide.

dence, s stands for the slab waveguide side, andj (j = 1,2, 3)

refers to the j region (which should not be confused with

the imaginary unit). The superscript “ inc” denotes the

incident fields; G# indicates the Green’s function for the

waveguide side, where i( =1,2,3) and j( =1,2,3) refer to

the regions in which the observation point P and the

integration point Q are located, respectively; n, n‘ and U, U’

are the coordinates normal to c and tangential to c, respec-

tively, at the points P and Q on c, while ~, ~’ are the angles

between the directions n, n’ and the z-axis. The harmonic

time dependence exp ( + jot) is assumed and is eliminated

throughout the paper. The tangential field components at a

point in the external side and unlimitedly close to the point

P on c are expressed as

J( i?G4 )H,y = – H,y~ + j#C4Ee”G4 dv’

E,o= -~[jH,;@POCOS(p-p’)G,-~~)

(3)

8G41–Eeuz do’ (4)

where the subscript e stands for the external side, and G4

indicates the Green’s function for the infinite domain, i.e.,

Gd = –(j/4)H~2)(kdR) (5)

where H~2J is the zeroth-order Hankel function of the

second kind, k, is the wavenumber in the i region (k, =

r rK,kO = u c p. where k. = @ ~opo ), and R is the distance

between the observation point P and the integration point

Q. Let +~, and OH. be

%?, = Hs@He = ‘ey (6a)

then

From the boundary conditions on c, we have the following

relations:

1 8$H, = 1 a@He
+17S=+H=, ‘“~

—.— (7)
K: K; & “

By putting the points, for which (1) and (3) are derived,

just on the observation point P on c, and by adding these

two equations, we obtain, with the aid of (7)

(8)

where Ow = @Hs( = OH.). similarly! by adding K? times (2)

and Kj times (4), we obtain

Equations (8) and (9) constitute the set of integral equa-

tions for 4H and 6’@H/ & on c.

B. TE Mode Incidence

Procedure similar to that in the preceding section leads

to the following integral equations for the case of TE mode

incidence [8]:

(11)

where +~ is the y-component of the electric field on c and

the subscript E stands for the case of TE mode incidence.
The range of boundary c need not be extended to

infinity, but can be limited to within an appropriate finite

extent beyond which the amplitude of the incident fields

becomes sufficiently small. The set of integral equations

can be transformed by dlscretization to the matrix equa-

tions, which can be solved by means of an iterative proce-

dure provided that the differences of K, (i = 1, 2, and 3) and

K4 are very small [8]. The iterative scheme is terminated

when the absolute values of the modulus of difference

between two successive orders of the values of @ and

i3@/8n become smaller than a certain specified fractional

number S, i.e.,

l(@~~’-@~)/@~+’l<8and

1(8~~+1/i3n - 6@y/i3n)/(80~+’/i3n)l <8
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where +, means the value@ on the lth segment ( = constant)

and m is the iterative number. In the case of TM mode

incidence, it is better to use l/Ic~. &#~/ dn instead of

d@~/dn as one of the unknowns of (8) and (9).

III. GREEN’S FUNCTIONS FOR THE WAVEGUIDE SIDE

Although the rigorous Green’s function for the wave-

guide side could be derived, it is extremely complicated

and is not suitable for practical computation. Therefore, let

us derive the approximate expressions of the Green’s func-

tion for the waveguide side which are simple enough and

yet sufficiently accurate, at least for our practical purposes.

Corresponding to the combinations of i and j, i.e., of the

regions where the source point Q and the observation point

P belong, we use these different types of expressions.

A. The Case Where P and Q are in the Same Region (i= j)

In this case, we use the Green’s function for the infinite

domain

~,~=-(j/4)H~2)( k, R).
~,1 (12)

This expression does not take the reflected fields from the

waveguide boundaries into account; the contributions of

these fields are, however, negligibly small in the present

problem, since we have assumed that the refractive index

difference between core and cladding is very small [13].

B. The Case Where One Boundary Exists Between P and Q

Let us assume, for instance, that the points Q and P are

in the regions of indices K1 and K ~, respectively, as shown

in Fig. 2.

When the point Q is not so close to (i.e., more than a few

tenths of a wavelength apart from) the boundary, we use

the following approximate expression based on geometrical

optics [11]:

G# H = – (~/4) H~2) ( klL1 ) T,$~AtlJe-~~2~2 (13)

with

T# = 2 COS61/(COS al + I=
)

(14)

GA(l) = ds /ds

(15)

= /( L,/fc,cos’(lJ/[ L,/(K,cos’6J+ L2/(fc2cos%2)]

(16)

(~’ = K;/K:. (17)

When the point Q comes close to the boundary, the error

in (13) increases. For such a case, we use the alternative
expression based on an idea of the image method. Apply-

ing the boundary conditions at the point KI with respect to

the fields in the region of K1 (which are obtained as the sum

of direct and image sources: Fig. 3(a)) and the fields in the

region of ~2 (Fig. 3(b)), we obtain

G~~~ = – ( j/4)sF ~H~2)(k,R) (18)

Fig. 2.

with

SE = 2/

925

&
kl z ‘2

,~s p

If ez ‘2

1

x

Treatment by means of the geometrical optics approximation.

(a) - (b)
Fig. 3. Image method approach.

(19)

(20)

C. The Case Where Two Boundaries Exist Between P and Q

In this case, we use the approximate expressions similar

to that of case B.

When the point Q is not so close to the boundary I, we

use the following expression based on geometrical optics

(Fig. 4):

G2~H = - (j/4) H~2)(k1L1)T~~~T~~~A(l)A’2)e-~(’~~~+’~~~)

(21)

where T~l), T~l), and A(l) take the same forms as those of

(14), (15), and (16), respectively, and

T~2) = 2 COSd2/(COS 82 + -) (22)

/- )A(’) = [&/(K1COS201 + ~2/’(K2COS2 02)]

/[~1/(KlCOS2fll)+ ~2\(K2COS2 02)+ ~3/(K3COS2f+)]

(24)

<23 = K;/ K;. (25)

When the point Q is close to the boundary I, we use the
exm-ession based on both the geometrical ovtics avDroxi-—,---- -. ..— ——r————— ————.–. .— . .,
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Fig. 4. The case involving two boundaries.

mation and the idea of image method. The result is

G~~ = - (J/4) s~,~Hj2)(k,R2)T~~~A’2’e-Jk’L’ (26)

where SE, s~ and T~2), T~2) take the same forms as those of

(19), (20) and (22), (23), respectively, and A(’) is the same

as that of (24).

IV. SCATTERED FIELDS

A. Reflected Fields

The reflected fields can be represented by the superposi-

tion of guided modes and radiation modes as follows [12]:

Fig. 5.

q=
I . . / lEt\lHt

A
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!=lr “ , ‘“ g
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Illustrative figure used for the calculation of scattered

The reflected radiation fields are given by

J
E;= ~ ‘3b@Y/3(~) ‘~

Z=l o

/
H;= ; ‘3bHP(,)HyP(z) dp

1=1 o

waves.

(34)

(35)

where EYP(,l and HVP{,) are the y-components of E ~(1) and

04~(,), respectively. The corresponding far-field expressions

are obtained by means of the saddle point technique [10].

Let us represent these far fields by E;(O) and H;(O), where

8 is measured from the direction of the positive z-axis.

Then, the total reflected radiation power is calculated from

where a$–j and bP(,) are the amplitudes of the reflected

guided modes and the reflected radiation modes, respec-

tively, p denotes the transverse wavenumber of the radia-

tion mode in the lower cladding region, and (IEP,U-llP)and

(~P(o’ . P(1)
Oil ) denote the normalized guided and radiation

mode fields, respectively. By applying the Lorentz reciproc-

ityy theorem for the region surrounded by the contour

c + cb + cm (Fig. S), we can obtain the amplitude of the
reflected modes as follows [13]:

(36)

in the case of TE mode incidence, and

[
P,= We/2- /“1/K11fiH;(0)12 dO

(31

in the case of TM mode incidence. In the foregoing equa-

tions, 61 and 62 are the tilt angles of the upward and

downward asymptotic lines of c, respectively. If @l= 77/2

and 02 = 7T/2, P, can be calculated from the following

simpler equation:

2

P,= ~ jk31bP(,)12dp.
~=1 o

B. Transmitted Fields

(38)

The transmitted far fields, and the total transmitted

powers, are given, respectively, as

where @s= ~ – #nc, 6’@/8n = 8@/dn – tf@inC/8n; W. is the

wave impedance in free space, and * indicates the complex

conjugation. The power of the pth reflected guided mode

can be obtained from

PP = Ia$-)l’. (33)

“/[a~~

1—–jk4q~cos (8 – ~’) eJk4”’cOsco-e’) dv’
. an’

(39)

P,= rcq/(2wo)~o’ ltiE;(0)12d6
– .92

(40)
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for the case of TE mode incidence, and

(

K2 (%$H
H;(8)=J -+.

8GJ

)

—Gb – 1#1~— du’
c Kj 6’n ’ iln’

{

12=__
4 wkbr

~–J(k4r+n/4)

(41)

P,= Wo/(2K4)~8’ lfiH;(8)12d/3
–!%

(42)

for the case of TM mode incidence.

The total scattered power is given by

P,= gPp+Pr+Pt (43)
~=1

both in the cases of TE and TM mode incidence. Accord-

ing to the law of energy conservation, P, should become

equal to the incident mode power.

V. NUMERICAL RESULTS

In this section, the numerical examples of reflected guided

and radiation powers, transmitted power, far-field pattern,

etc., will be presented for the cases of plane-tilted and

arc-shaped end surfaces.

The choice of the Green’s functions given in Section

III-B and -C, is made as follows: (18) and (26) (for which

the idea of image method was applied) are used when the

distance from the source point Q to the boundary is less

than 0.3 times the wavelength in the corresponding re-

gions; otherwise (13) and (21) are used. The differentiation

of (18) and (26) is obtained numerically, while that of (13)

and (21) is obtained analytically. The range of integration

over c is limited to within the region in which more than

99.98 percent of the power of the highest possible guided

mode is contained. The division number in the discretiza-

tion of an integral is chosen so that the length of each

section is about 0.1 times the wavelength in the core or

cladding regions (according to the region considered). These

values were determined on the basis of numerical evalua-

tion of the convergence feature that was fully done in [8]

for the case of the vertical plane end. The accuracy at-

tained vanes with the shape of the end surface, waveguide

parameters (K,; i = 1-3 and d), the types of incident mode

(TE or TM), the medium of the external space, etc. One of

the simple ways for checking the accuracy of the present

method is to evaluate the value of total scattered power P,

(which should be equal to the incident power).

First, let us compare the results of the present method

with those of other methods. Fig. 6 shows a comparison

with the results of Ikegami [4] and Gelin et al. [7], and

Table I shows a comparison with the results of Rozzi et al.

[5]; the numerical values of the parameters used are shown

in the corresponding figure and table. For these examples,

the direct matrix inversion was used instead of iteration to
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A=1O”I.
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o.99~

I
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0.40

PI

0.35I

~Ikegami

.-.
\to+ ,

I /\ Gelin etal.i+
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~
1.0-.
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Fig. 6. Comparison of PI with that of other methods [4], [7]: PI (TE
mode incidence, A ~ = 0.86pm, verticid plane end. Ps: present method

only,)

TABLE I
COMPARISON WITH OTHER METHOD [5]: a~,;j

ICI ‘KS = 3.4. IC2= 3.61, K4 =1.0, AO=0.9pm, d=l.6pm, vertical plane
end,

m
solve the integral equation set. The results of Fig. 6 and

Table I show that the present method is applicable with

considerably high accuracy to the cases of a comparatively

large refractive index difference.

Next, let us assume the waveguide parameters as fol-

lows:

K1 = K3 =].5, K2 =1.515, and kod=14n/3.

Then, the normalized frequency V becomes about 3.12 and

a single guided mode is supported, and about 84 percent of

the mode power is confined within the core region in both

TE and TM cases. K4 is chosen as 1.34 and 1.0, correspond-

ing to sea water and air, respectively. For these examples,

the iteration procedure was used to solve the integral

equation set, using 10 – 3 as the criterion number 8 for the

termination of the iterative scheme; the iteration numbers

were around 10 for the case of sea water and around 20 for

the case of air.

A. Plane Surface End

Figs. 7–10 show the reflected guided mode power Pl, the

reflected radiation power P,, the transmitted power Pt, and

the total scattered power P, as a function of the tilt angle a.
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Fig. 7. Reflected guided mode power Pl, reflected radiation power Pr,
transmitted power f’~, and total scattered power P,. (TE mode inci-
dence, K4 = 134.)
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Fig. 8. Reflected guided mode power Pl, reflected radiation power P,,
transmitted power P,, and total scattered power’ p,. (TM mode inc-

idence, it~ = 1.34.)

Figs. 7 and 9 are for the TE mode incidence and Figs. 8

and 10 are for the TM mode incidence. The refractive

index in the external side is fcq =1.34 (sea water) or K4 =1.0

(air). For the tilt angle a less than about100, PI decreases

monotonically as a increases, while it oscillates for a larger

than 100. At the tilt angles a =400 in Fig. 8 and a = 300

in Fig. 10, a local maximum appears in the curve of

transmitted power P, and a local minimum appears in the

curve of reflected radiation power P,. It is interesting to

note that these angles coincide with the Brewster’s angles

of the plane wave approximation (41.60 for K4 =1.34 and
33.50 for K4 = 1.0, when the effective index Kcff = 1.51O is

used in the waveguide side).

Figs. 11–14 show the typical radiated far-field patterns

(note that the scales for the reflected field and the trans-

mitted field are different). It can be seen that, in the case of

TE mode incidence, a single lobe appears in the direction

of reflection, while in the case of TM mode incidence, two

noticeable lobes appear in the different directions. The

lobes of the transmission fields point to the 5.90 direction

in the case of K4 =1.34, and to the 17.90 direction in the

case of Kd =1.0. It should be pointed out that these direc-

tions are very close to those for the plane wave approxima-

tion (6.40 0 in the case of K4 =1.34 and 19.00 in the case of

K4 =1.0).

P. I Ulol

Et

-------- ---- ----
1 \ 1.01.000

10-1 -::-J___ -- ,999
10-2

P1 10-3

P, “, .9

R ‘\ pt p~

R ,()-4 ‘\, .8

10-5 P, .995
10-6 7
10-7

1o-d I I
o 10 20 30

d (deg.)

Fig. 9. Reflected guided mode power Pl, reflected radiation power P,,
transmitted power P,, and total scattered power P,. (TE mode inci-
dence, K4 = 1.0.)

-.-- ..- -----
1

Pr
‘t

10-1

P,]@ ~-
10-5,

10-6 l’1

10+

‘0-0 10 20 ’30 ‘
d I I

Ct(deej.)

Fig. 10. Reflected guided mode power PI, reflected radiation power P,,
transmitted power P,, and total scattered power P,. (TM mode inci-
dence, IC4= 1.0.)

The typical numerical values of Pl, P,, P,, and P, are

tabulated in Table 11 for the cases of K4 =1.34 (a= 00 and

40°) and K4 =1.0 (a= 0° and 300). The values in the

parentheses show the corresponding values obtained by

means of the plane wave approximation. As far as the

principal reflected power is concerned, the results obtained

by the plane wave approximation agree well with those

obtained by the present analysis except for the case where

the TM mode is incident upon a tilted-plane surface end.

B. Arc-Shaped End

Figs. 15–18 show Pl, P,, P,, and P, as a function of the

parameter b, which represents the height or depth of an

arc-shaped protrusion or depression in the core region. The

minus value in b indicates a retracted arc-shape.

VI DISCUSSIONS AND CONCLUSIONS

Reflection, transmission, and radiation of the guided

mode caused by the arbitrarily shaped broken end in a

dielectric slab waveguide were analyzed theoretically by

means of the integral equation method. Numerical results

were presented for the plane-tilted and the arc-shaped end

surfaces. Simple, but sufficiently accurate, approximate

Green’s functions were derived and utilized to treat the

problem.
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Radiated far field pattern. (TE mode incidence,
ri= 40”.)
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Fig. 13. Radiated far field pattern. (TE mode incidence, Nd = 1.0, a =
300 .)

Fig. 14. Radiated far field pattern. (TM mode incidence, K4 = 1.0, a =

300 .)

l@.~
., 0.5

bld

Fig. 15. Scattered powers from the arc-shaped end. The case of b <0

means the retracted arc-shape. (TE mode incidence, K4 = 1.34.)
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Fig. 16. Scattered powers from the arc-shaped end. The case of b <0

means the retracted arc-shape. (TM mode incidence, K4 =1.34.)
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Fig. 17. Scattered powers from the arc-shaped end. The case of b <0

means the retracted arc-shape. (TE mode incidence, K~ =1.0.)

TABLE II

TYPICAL NUMERICAL VALUES OF P,, p?, p,, AND p, FoR THE pLANE
SURFACE END

K
K .. ..(IC P ‘P, &

[1
IL 7.08. 1[1- ,3.54 .1[1-3) : -14.3

Ill 3.6 S.lO-J [3.54 .10-]) + -24.4
1.34 -b

4[) 11 3.44’10
.~~,~

TM 4.7h. lfl-6 -S3.2

o Tl, 4.205 .10-2 [4.12.10-21; -13.8

TM 4.120.10-2(4.12.10-2), -13.9
1.0

30 71 2.17.10-6 I .$6,6
Th! 8. 28.10-6 1 -50.8 mP r>

p.
1.22.10- “.99,2<1 1.0,10 [1,

1 ,25.10-4 0,9Q675 1.00(117

1,307 .10-2 [1 .25.10-2) 0.!18f174 !.[10 [141

4 .78.10-4 [4. ’1R. 10-5) fl.9qq88 l.OG(l~I1

2.41 .in-~ “.Q5806 1.11[1[13s

2.00.10-’ 0,0$892 1,01103’,

0.12331 (0.1101 0.87706 1.0111137

1.0 Sl,.lfl -2(4 .48.111 -3] “,g8931 (0.,1 <1988
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Fig. 18. Scattered powers from the arc-shaped end. The case of b <0
indicates a retracted arc-shape. (TM mode incidence, K4 = 1.0.)

Although we have considered the slab-type waveguides,

we would be able to apply these results, at least in order of

magnitude, to the cases of optical fiber cables. Our numeri-

cal results suggest that the reflected power level larger than

– 50 dB can be expected, except for the plane surface end

with considerably large tilt angles. On the other hand, the

Backscattered power level evaluated by the theory used in

[1] becomes about – 50 dB for the optical fiber whose core

radius is 3.6 pm, with core and” cladding indices being

1,515 and 1.5, respectively, assuming that the wavelength is

1.55 pm (V= 3.10), Rayleigh scatter loss is 0.18 dB/km,

and pulse duration time is 1 ps. Compared with this result,

the method using direct reflected pulse seems to be compe-

titive with the backscattering method for the purpose of

detection and ranging of fault location in the single-mode

optical fibers.

‘The method of analysis given in the present paper would

be applicable, for instance, to the analysis of the coupling

between a laser diode and a dielectric waveguide, and to

the analysis of mode coupling of two dielectric waveguides

at a joint with tilt and/or offset in the guide axes.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
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