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Scattering of Guided Modes Caused by an
Arbitrarily Shaped Broken End in
A Dielectric Slab Waveguide

EIICHI NISHIMURA, STUDENT MEMBER, IEEE, NAGAYOSHI MORITA, MEMBER, IEEE,
AND NOBUAKI KUMAGALI, FELLOW, IEEE

Abstract —Electromagnetic scattering of guided modes in a dielectric
slab waveguide caused by an arbitrarily shaped broken end is analyzed
theoretically by using the integral equation method. By solving the integral
equations iteratively, the tangential components of the electric and mag-
netic fields on the broken end surface are determined, from which the
reflected mode power, the radiation wave power and field patterns, and
the total scattered power are obtained. Numerical results are presented for
the plane-perpendicular, plane-tilted, and arc-shaped end surfaces. Both TE
-and TM modes are assumed as an incident wave.

1. INTRODUCTION

ECENTLY, remarkable progress has been made in
Rsingle—mode fiber techniques, yet several difficult tech-
nical problems still remain to be solved before practical
single-mode optical fiber transmission systems can be real-
ized. One of the most important problems is the detection
and ranging of breakage in the single-mode optical fiber
cables. The backscattering method seems to be one of the
effective techniques for detecting the fault location and for
determining the loss distribution along optical fibers, par-
ticularly for the multimode fibers [1]. However, in the case
of single-mode fibers, the backscattered power is very small
because of the small core diameter and the slight index
difference between core and cladding. The method using
direct reflected light from breakage is another possible
technique for the detection of fault location in the single-
mode fibers. The disadvantage of this method is that the
amount of reflected power depends strongly on the situa-
tions of breakage. Therefore, to discuss the feasibility of
this method, we have to know beforehand the reflected
power from various types of breakage in the single-mode
fibers.

Reflection of guided modes at the tilted-plane end
surfaces has been considered in connection with the prob-
lems of the imperfectly broken fiber ends [2] and of the
tilted mirrors in semiconductor lasers [3]. The theories in
these papers, however, are not satisfactory in the sense that
they have not taken the full boundary conditions into
account. Similar problems have been treated by the varia-
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tional method [4]-{6] and the mode expansion method [7].
Practically, however, these analyses are applicable only to
the vertical end surfaces.

In the present paper, the electromagnetic scattering from
the arbitrarily shaped broken ends in a dielectric slab
waveguide is analyzed, based on the integral equations
which are derived by applying the full boundary conditions
on the end surface. In the integral equations, simple, but
sufficiently accurate, approximate expressions of the
Green’s functions are used in the waveguide side, while the
conventional Green’s function is employed in the external
side. Numerical results are presented for the cases of
tilted-plane and arc-shaped cut ends of a dielectric slab
waveguide embedded in sea water and air for both TE and
TM mode incidences. From these numerical data, the
possible detectable range of fault location by using re-
flected pulses from the breakage in the single-mode optical
fiber cables can be estimated.

II. INTEGRAL EQUATIONS

Consider the arbitrarily shaped end surface of the dielec-
tric slab waveguide as shown in Fig. 1. In the figure, ¢
denotes the boundary line between the external side, with
refractive index «,, and the slab waveguide side, which
consists of the core with thickness d and refractive index
k,, and the upper and lower claddings with refractive
indices k; and k4, respectively. It is assumed that «, >k, >
Kl'

A. TM Mode Incidence

The tangential field components at a point in the wave-
guide side and unlimitedly close to the observation point P
on ¢ are expressed as [9], [10]

. Gy . ;
H, =H™+ f H,, an}'I + ]wEJEMGH) dv (1)
1 9*GY
—_ me ; -— ’ L
Esv Ev +/;lJHsy(w”OCOS(B B )GH wej auav/)
3Gy
- Esv anH ] av’ (2)

where the subscript H means the case of TM mode inci-
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dence, s stands for the slab waveguide side, and j (7 =1,2,3)
refers to the j region (which should not be confused with
the imaginary unit). The superscript “inc” denotes the
incident fields; G} indicates the Green’s function for the
waveguide side, where i(=1,2,3) and j(=1,2,3) refer to
the regions in which the observation point P and the
integration point Q are located, respectively; 7, n “and v, v’
are the coordinates normal to ¢ and tangential to ¢, respec-
tively, at the points P and Q on ¢, while 8, 8’ are the angles
between the directions #, n’ and the z-axis. The harmonic
time dependence exp(+ jw?) is assumed and is eliminated
throughout the paper. The tangential field components at a
point in the external side and unlimitedly close to the point
P on c are expressed as

= _/( + Jjwe, E, UG4) dv’ (3)
1 3%
Y P
dG,
_EEU——én_4}dUl (4)

where the subscript e stands for the external side, and G,
indicates the Green’s function for the infinite domain, i.e.,

Gy == (j/4) H? (k4R) (5)
where H{® is the zeroth-order Hankel function of the
second kmd k, is the wavenumber in the / region (k, =
K,kg = wye, g where ko= wm ), and R is the distance
between the observation point P and the integration point
Q. Let ¢, and ¢, be

¢Hs = Hsy¢He =H (63.)

then

L m g T 9% (g

v e, dn’ T we, dn

1

From the boundary conditions on ¢, we have the following
relations:

¢Hs=q>He’ on = E— (7)

\KN| =

By putting the points, for which (1) and (3) are derived,
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just on the observation point P on ¢, and by adding these
two equations, we obtain, with the aid of (7)

J
¢H=¢‘;‘,°+fc[¢ﬂan,(G
. a(i)H

2G,) | dv’
on’ 4 ):l
where ¢y = ¢z,( = ¢p,). Similarly, by adding k2 times (2)
and «2 times (4), we obtain

1 ) 8¢H= 2 ‘ a¢1nc + 2
an K,2+K‘21 an

1
2

K,

—G4)—

(k76 (8)

2 2
K+ K)

-/{tpﬂ[kécos(ﬁ —B’)(K,ZG}}—- niG4)

|

(mz—m)} v ©)

"l
~on

K2
—Gij—-G,

2
J

1 d¢y 9

nj2 gn’ On

Equations (8) and (9) constitute the set of integral equa-
tions for ¢ and d¢y /dn on c.

B. TE Mode Incidence

Procedure similar to that in the preceding section leads
to the following integral equations for the case of TE mode
incidence [8]:

inc ’ a¢ : !
(10)
8 a 1nc
fou_THE +f.{¢E[k5cos<ﬂ—ﬁ')<~fcy—xi6'4>
82
— GY~G
auav’( £ 4)]
oy ?
S wa riC 4)} “ o

where ¢ is the y-component of the electric field on ¢ and
the subscript £ stands for the case of TE mode incidence.

The range of boundary ¢ need not be extended to
infinity, but can be limited to within an appropriate finite
extent beyond which the amplitude of the incident fields
becomes sufficiently small. The set of integral equations
can be transformed by discretization to the matrix equa-
tions, which can be solved by means of an iterative proce-
dure provided that the differences of «,(i =1, 2, and 3) and
Kk, are very small [8]. The iterative scheme is terminated
when the absolute values of the modulus of difference
between two successive orders of the values of ¢ and
d¢/dn become smaller than a certain specified fractional
number 6, i.e.,

(g7t —¢r) /97" <8 and
|(agy+/dn - a7/ on)/(der+Y/on)| <8
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where ¢, means the value ¢ on the /th segment ( = constant)
and m is the iterative number. In the case of TM mode
incidence, it is better to use 1/k2-d¢,/dn instead of
d¢y /dn as one of the unknowns of (8) and (9).

I11.

Although the rigorous Green’s function for the wave-
guide side could be derived, it is extremely complicated
and is not suitable for practical computation. Therefore, let
us derive the approximate expressions of the Green’s func-
tion for the waveguide side which are simple enough and
yet sufficiently accurate, at least for our practical purposes.
Corresponding to the combinations of i and j, i.e., of the
regions where the source point Q and the observation point
P belong, we use these different types of expressions.

GREEN’S FUNCTIONS FOR THE WAVEGUIDE SIDE

A. The Case Where P and Q are in the Same Region (i = j)

In this case, we use the Green’s function for the infinite
domain

Gi,n=—(j/4)HP (k;R). (12)
This expression does not take the reflected fields from the
waveguide boundaries into account; the contributions of
these fields are, however, negligibly small in the present
problem, since we have assumed that the refractive index
difference between core and cladding is very small [13].

B. The Case Where One Boundary Exists Between P and Q

Let us assume, for instance, that the points Q and P are
in the regions of indices k; and «,, respectively, as shown
in Fig. 2.

When the point Q is not so close to (i.e., more than a few
tenths of a wavelength apart from) the boundary, we use
the following approximate expression based on geometrical
optics [11]:

G2 = = (/4 B by L T A

(13)

with
TN = 2co0s 01/(00501 +m) (14)
TP = 2¢,c08 01/(612005 6, +m) (15)

AD = Jds, /ds,

= \/(Ll/nlcosz01)/[L1/(:c1005201)+ L, /(x,c08%6, )]
(16)
(17)

When the point Q comes close to the boundary, the error
in (13) increases. For such a case, we use the alternative
expression based on an idea of the image method. Apply-
ing the boundary conditions at the point K; with respect to
the fields in the region of «; (which are obtained as the sum
of direct and image sources: Fig. 3(a)) and the fields in the
region of k, (Fig. 3(b)), we obtain

Geon=—(i/Ysp, yHY (kyR)

2 2
€ = K3 /K]

(18)
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Fig. 3. Image method approach.
with
sp=2/ H{P (kyLy) ks | H® (kL)
g HéZ)(lel) ! HI(Z)(lel)
B 1 VUHP (kL) T HP (K Ly)
(19)
5, =2/ HP (k,Ly) i HP (k,L,)
" HéZ)(lel) k2 Hl(Z)(lel)

Ky 1 Kk —kK, Héz)(lel)
==+ = - —= lel_z_———
K 2 k1 H®(k;,L;)

H? (kL)
" HP (K Ly)

]. (20)

C. The Case Where Two Boundaries Exist Between P and Q)

In this case, we use the approximate expressions similar
to that of case B.

When the point @ is not so close to the boundary I, we
use the following expression based on geometrical optics
(Fig. 4): ‘

G2 = = (J/4) HP (e Ly) T, TR, ADADe=ikaLatksL)
(21)

where T, TP, and AD take the same forms as those of
(14), (15), and (16), respectively, and

T® =2cosb,/ (cos o, + \/Eza—Tzﬂz ) (22)
TP = 2e53c05 02/(523005 6, + m) (23)

A9 = \/[Ll/(kl cos? 8, )+ Ly /(;c0s% 6, )]

/[ L1/ (k1cos?6,)+ L, /(,c0820,) + Ly /(k;c0s? 6]
: (24)
€3 = K3/K3. (25)

When the point Q is close to the boundary I, we use the
expression based on both the geometrical optics approxi-
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Fig. 4. The case involving two boundaries.

mation and the idea of image method. The result is
G == (/D s g HP (kyR,y) TP APe /5L (26)

where sz, s, and T2, TP take the same forms as those of
(19), (20) and (22), (23), respectively, and A? is the same
as that of (24).

IV. ScatteEreD FIELDS

A. Reflected Fields

The reflected fields can be represented by the superposi-
tion of guided modes and radiation modes as follows [12]:

E = Z alE, + Zf o E oy 40 (27)
p=1
H = Z alOH, + Z/ oo de  (28)
p=1
where {7 and b,,, are the amplitudes of the reflected

guided modes and the reflected radiation modes, respec-
tively, p denotes the transverse wavenumber of the radia-
tion mode in the lower cladding region, and (E,,H,) and
(E,(,)»H,,y) denote the normalized guided and radiation
mode fields, respectively. By applying the Lorentz reciproc-
ity theorem for the region surrounded by the contour
c+c,+c, (Fig. 5), we can obtain the amplitude of the
reflected modes as follows [13]:

- _J
Gow = 4k ow,

d ¢
f(‘i’fm 8¢I’E = ¢ E,#) dv’ (29)

__J I¢%
bEp(l)— 4k0W0 j;( t"'p(t) an’ —¢E

Ik
aEP/( ) ) dv/ (30)

o W 1 d¢ % ,
=g [ e | ()
J

ck

; ij (¢Hp<z) , ~ O

” ¢”"f') ) dv’ (32)

on

 where ¢° = ¢ — ¢'™, 3¢°/In = 3¢/ In — 3$™/dn; w, is the
wave impedance in free space, and * indicates the complex
conjugation. The power of the pth reflected guided mode
can be obtained from

(33)

= |g(2
P, =la,”|"

Fig. 5. Illustrative figure used for the calculation of scattered waves.

The reflected radiation fields are given by

2
k
= Z 4 3bEp(t)Eyp(1)dp (34)
=1
2 ks
Z_{) pr(l) }p(t)dp (35)

1=1
where £, and H,,, are the y-components of E ., and
H,,), respectively. The corresponding far-field expressions
are obtained by means of the saddle point technique [10].
Let us represent these far fields by E7(6) and HJ(0), where
8 is measured from the direction of the positive z-axis.
Then, the total reflected radiation power is calculated from

P,=1/wy [/;M]\/;Ey’(ﬁ)ﬁdﬂ +f2”_02x3|\/FEv’(0)|2d0]
(36)

in the case of TE mode incidence, and

P=w,/2- [fgﬂl/nlh/;Hy’(H)]zdﬂ

+/2”“021/x3|\/FH;(0)|2d9} (37)

in the case of TM mode incidence. In the foregoing equa-
tions, 8, and @, are the tilt angles of the upward and
downward asymptotic lines of ¢, respectively. If 8, ~ /2
and 6, =x/2, P, can be calculated from the following
simpler equation:

2

P = Zfl (,)| dp.

1=1

(38)

B. Transmitted Fields

The transmitted far fields, and the total transmitted
powers, are given, respectively, as

J
N S Y
f[—— ~ jkypgcos(8 — ,3')] elkar'cos(0-0%) g
(39)
6
P=ky/(w) [ WrE[(6))df (40)
-9
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for the case of TE mode incidence, and

k2 d¢ aG.
H{(6)=[| =% . —Hg, - 2 @
y( ) ];(xf ' * ¢H8n’
—~ l 2 e~—j(k4r+ﬂ/4)
4\ ak,r
K‘% a¢H . ’, kqr’cos(8—6") g.s
j; pEw — Jk4pycos(8 — B’ |es*s dv
J
(41)
6
P=wy/(26,) [ NEHORT (42)
Y2
for the case of TM mode incidence.
The total scattered power is given by
M
P.=3 P +P+P (43)
p=1

both in the cases of TE and TM mode incidences. Accord-
ing to the law of energy conservation, P, should become
equal to the incident mode power.

V. NUMERICAL RESULTS

In this section, the numerical examples of reflected guided
and radiation powers, transmitted power, far-field pattern,
etc., will be presented for the cases of plane-tilted and
arc-shaped end surfaces.

The choice of the Green’s functions given in Section
ITI-B and -C, is made as follows: (18) and (26) (for which
the idea of image method was applied) are used when the
distance from the source point Q to the boundary is less
than 0.3 times the wavelength in the corresponding re-
gions; otherwise (13) and (21) are used. The differentiation
of (18) and (26) is obtained numerically, while that of (13)
and (21) is obtained analytically. The range of integration
over ¢ is limited to within the region in which more than
99.98 percent of the power of the highest possible guided
mode is contained. The division number in the discretiza-
tion of an integral is chosen so that the length of each
section is about 0.1 times the wavelength in the core or
cladding regions (according to the region considered). These
values were determined on the basis of numerical evalua-
tion of the convergence feature that was fully done in [§]
for the case of the vertical plane end. The accuracy at-
tained varies with the shape of the end surface, waveguide
parameters (k,; i =1~ 3 and d), the types of incident mode
(TE or TM), the medium of the external space, etc. One of
the simple ways for checking the accuracy of the present
method is to evaluate the value of total scattered power P,
(which should be equal to the incident power).

First, let us compare the results of the present method
with those of other methods. Fig. 6 shows a comparison
with the results of Ikegami [4] and Gelin et al. [7], and
Table I shows a comparison with the results of Rozzi ef al.
[5]; the numerical values of the parameters used are shown
in the corresponding figure and table. For these examples,
the direct matrix inversion was used instead of iteration to
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Fig. 6.. Comparison of P; with that of other methods [4), [7]: P, (TE
mode incidence, Ag = 0.86pm, vertical plane end. Ps: present method
only.)

TABLEI
COMPARISON WITH OTHER METHOD [5]: a{ 3
wy=3=34,k,=3.61,x,=10,A5=09m, d =1.6pm, vertical plane
end.

1ncident

node No Present Method

Rozz1 et al.

al(- 0.575+30.001 0.575+10,003

1 " Ss s o
3

=

s

3

)

> | -6.004+y0.001 -0.004+50.002
)

)

-0.004+,0.002

0.660+)0,018

5 4 ~0.003+;0.002

FRERED

0,663+30,010

solve the integral equation set. The results of Fig. 6 and
Table I show that the present method is applicable with
considerably high accuracy to the cases of a comparatively
large refractive index difference.

Next, let us assume the waveguide parameters as fol-
lows:

k) =Ky =1.5, k, =1.515, and k d =147/3.

Then, the normalized frequency ¥ becomes about 3.12 and
a single guided mode is supported, and about 84 percent of
the mode power is confined within the core region in both
TE and TM cases. k is chosen as 1.34 and 1.0, correspond-
ing to sea water and air, respectively. For these examples,
the iteration procedure was used to solve the integral
equation set, using 10> as the criterion number 8 for the
termination of the iterative scheme; the iteration numbers
were around 10 for the case of sea water and around 20 for
the case of air.

A. Plane Surface End

Figs. 7-10 show the reflected guided mode power P,, the
reflected radiation power P,, the transmitted power P,, and
the total scattered power P, as a function of the tilt angle a.
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Fig. 7. Reflected guided mode power P, reflected radiation power P,
transmitted power P,, and total scattered power P,. (TE mode inci-
dence, k, =1.34)
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Fig. 8. Reflected guided mode power P, reflected radiation power 7,
transmitted power P,, and total scattered power P,. (TM mode inci-
dence, k4 =1.34.)

Figs. 7 and 9 are for the TE mode incidence and Figs. 8
and 10 are for the TM mode incidence. The refractive
index in the external side is k, =1.34 (sea water) or x, =1.0
(air). For the tilt angle « less than about 10°, P, decreases
monotonically as & increases, while it oscillates for « larger
than 10°. At the tilt angles @ =~ 40° in Fig. 8 and a=30°
in Fig. 10, a local maximum appears in the curve of
transmitied power P, and a local minimum appears in the
curve of reflected radiation power P,. It is interesting to
note that these angles coincide with the Brewster’s angles
of the plane wave approximation (41.6° for x, =1.34 and
33.5° for k, =1.0, when the effective index « ; =1.510 is
used in the waveguide side).

Figs. 11-14 show the typical radiated far-field patterns
(note that the scales for the reflected field and the trans-
mitted field are different). It can be seen that, in the case of
TE mode incidence, a single lobe appears in the direction
of reflection, while in the case of TM mode incidence, two
noticeable lobes appear in the different directions. The
lobes of the transmission fields point to the 5.9° direction
in the case of k, =1.34, and to the 17.9° direction in the
case of x, =1.0. It should be pointed out that these direc-
tions are very close to those for the plane wave approxima-
tion (6.40° in the case of k, =1.34 and 19.0° in the case of
x, =1.0).
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Fig. 9. Reflected guided mode power Py, reflected radiation power P,,
transmitted power P,, and total scattered power P,. (TE mode inc1-
dence, k4, =1.0.)
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Fig. 10. Reflected guided mode power P, reflected radiation power P,

transmitted power P,, and total scattered power P,. (TM mode inci-
dence, £, =1.0.)

The typical numerical values of P,, P, P,, and P, are
tabulated in Table 1I for the cases of k, =1.34 (a=0° and
40°) and k,=1.0 (a=0° and 30°). The values in the
parentheses show the corresponding values obtained by
means of the plane wave approximation. As far as the
principal reflected power is concerned, the results obtained
by the plane wave approximation agree well with those
obtained by the present analysis except for the case where
the TM mode is incident upon a tilted-plane surface end.

B. Arc-Shaped End

Figs. 15-18 show P,, P,, P,, and P, as a function of the
parameter b, which represents the height or depth of an
arc-shaped protrusion or depression in the core region. The
minus value in b indicates a retracted arc-shape.

VI DiscussioNs AND CONCLUSIONS

Reflection, transmission, and radiation of the guided
mode caused by the arbitrarily shaped broken end in a
dielectric slab waveguide were analyzed theoretically by
means of the integral equation method. Numerical results
were presented for the plane-tilted and the arc-shaped end
surfaces. Simple, but sufficiently accurate, approximate
Green’s functions were derived and utilized to treat the
problem.
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Fig. 11. Radiated far field pattern. (TE mode incidence, «,=1.34,
a=40°)
270°
Fig. 12. Radiated far field pattern. (TM mode incidence, xk, =1.34,
a=40°)
& 90° .
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Fig. 13. Radiated far field pattern. (TE mode incidence, k, =1.0, a =
30°)
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Fig. 14. Radiated far field pattern. (TM mode incidence, k, =1.0, a =
30°)
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Fig. 15. Scattered powers from the arc-shaped end. The case of <0
means the retracted arc-shape. (TE mode incidence, k, =1.34.)
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Fig. 16. Scattered powers from the arc-shaped end. The case of b <0
means the retracted arc-shape. (TM mode incidence, x4 =1.34.)
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Fig. 17. Scattered powers from the arc-shaped end. The case of b <0
means the retracted arc-shape. (TE mode incidence, k4, =1.0.)

TABLE II N
TYPICAL NUMERICAL VALUES OF P;, P,, P,, AND P, FOR THE PLANE
SURFACE END
<, | a° [ mode P, e, (dB) v e, v,
0 1L ] 3.0800070(3.54+10 %) | -24.3 | 1.224107 " 0, 99029 | 1.06009
[ | 5.65-1073(3.54-107%) 1 -24.4 | 1.25-107% 0,99635 | 1.00013
1.34 40 1L [ 3.4401078 ¢« -5a.6 ] 1.367-1072(1. 25107 %) [ 0.98674 | 1.00041
™ |4.76.107° ' g3.2|4.78.10% (4.908.107%)]0,99988 | 1.000%
0 1L 4.zns~1o“(4.1z-xo'zﬂ -13.8 ] 2.410107¢ 0.95806 | 1.00035
T [ 4.1200107%(4.1201072), -13.9 | 2.06+107" 0,95892 | 1.000%3
AL P I PR E R T | 256,61 0.12331  {0,110) 0.87706 | 1.00037
™ |8.28-1078 | -50.8 1.056-1072(4.48+1073) | 5, 98931 | 0.90088
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Fig. 18. Scattered powers from the arc-shaped end. The case of b <0
indicates a retracted arc-shape. (TM mode incidence, k4 =1.0.)

Although we have considered the slab-type waveguides,
we would be able to apply these results, at least in order of
magnitude, to the cases of optical fiber cables. Our numeri-
cal results suggest that the reflected power level larger than
—50 dB can be expected, except for the plane surface end
with considerably large tilt angles. On the other hand, the
backscattered power level evaluated by the theory used in
[1] becomes about —50 dB for the optical fiber whose core
radius is 3.6 pm, with core and cladding indices being
1.515 and 1.5, respectively, assuming that the wavelength is
1.55 pm (V =3.10), Raylelgh scatter loss is 0.18 dB/km,
and pulse duration time is 1 us. Compared with this result,
the method using direct reflected pulse seems to be compe-
titive with the backscattering method for the purpose of
detection and ranging of fault location in the single-mode
optical fibers.

The method of analysis given in the present paper would
be applicable, for instance, to the analysis of the coupling
between a laser diode and ‘a dielectric waveguide, and to
the analysis of mode coupling of two dielectric waveguides
at a joint with tilt and/or offset in the guide axes.
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